a2 United States Patent

US009087212B2

(10) Patent No.: US 9,087,212 B2

Balakrishnan et al. (45) Date of Patent: Jul. 21, 2015
(54) METHODS AND APPARATUS FOR (56) References Cited
SECURING A DATABASE
U.S. PATENT DOCUMENTS
(75) Inventors: Hari Balakrishnan, Belmont, MA (US); 2004/0243816 Al* 12/2004 Hacigumus etal. 713/193
Raluca Ada Popa, Cambridge, MA 2004/0255133 Al* 12/2004 Leietal. 713/193
(US); Nickolai Zeldovich, Allston, MA 2008/0033960 Al* 2/2008 Banksetal. 707/9
(US) 2008/0133935 Al* 6/2008 Elovicietal. 713/193
2010/0146299 Al* 6/2010 Swaminathan etal. 713/189
2012/0131075 Al* 5/2012 Mawdsley et al. 707/825
(73) Assignee: Massachusetts Institute of Technology, 2012/0159180 Al* 6/2012 Chaseetal. ... - T13/183
Cambridge, MA (US) 2013/0151861 Al* 6/2013 Gan 713/189
8¢ 2013/0179684 Al* 7/2013 Furukawa ... 713/165
2013/0262863 Al* 10/2013 Yoshino etal. 713/165
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35 . .
U.S.C. 154(b) by 600 days. Stefan Hildenbrand, Donald Kossman, Tahmineh Sanarad, Carsten
Binnig, Franz Faerber, and Johannes Wochler, “Query Processing on
Encrypted Data in the Cloud”, Swiss Federal Institute of Technology
(21) Appl. No.: 13/357,988 Zurich, Sep. 12, 2011, pp. 1-13.*
Raluca Ada Popa, Catherine M.S. Redfield, Nickolai Zeldovich, and
. Hari Balakrishman, “CryptDB: Protecting Confidentiality with
(22) Filed: Jan. 25, 2012 Encrypted Query Processing”, ACM, Oct. 23-26, 2011 .*
(65) Prior Publication Data * cited by examiner
US 2013/0191650 A1 Jul. 25,2013 Primary Examiner — Joseph P Hirl
Assistant Examiner — Chi Nguy
(51) Int.Cl (74) Attorney, Agent, or Firm — Daly, Crowley, Mofford &
HO4L 29/06 (2006.01) Durkee, LLP
GO6F 21/62 (2013.01) (57) ABSTRACT
Ho4L 9/00 (2006.01) Methods and apparatus for a system to maintain confidenti-
(52) U.S.CL ality of data in a database management system by selecting
CPC GO6F 21/6227 (2013.01); HO4L 9/008 encryption schemes for data items, storing encrypted data in
(2013.01); GO6F 2221/2107 (2013.01) databases, transforming SQL queries to run over encrypted
(58) Field of Classification Search data, and executing queries over encrypted data on the data-

USPCcceueee 726/26-30; 713/153, 165, 189-194
See application file for complete search history.

base server.

32 Claims, 8 Drawing Sheets

INTERCEPT SQL QUERY

200

!

MODIFY SQL QUERY FROM APPLICATION

202

'

(OPTIONALLY) ADJUST ENCRYPTION

204

!

SEND MODIFIED QUERY TO SERVER
205

'

OBTAIN QUERY RESULTS
206

'

DECRYPT RESULTS
208

!

RESULTS TO APPLICATION
210

US 9,087,212 B2

Sheet 1 of 8

Jul. 21, 2015

U.S. Patent

z0l 901 o 801
AN AN N AN
r N[hYd A4
h JBAIBS SINGQ _m 18A19S AX0.1d “ 19A19s uoneoyddy “ siemndwod sasn
: 0Tl | | [
| siqe1 Ao) ((pardfious)) | (eweos Id | |
“ gzoL— peidAioug eleq “ pelejouuy | | :sA8Y 8ANOY | oL “
_ J f | Qoovr (| A | Zd plomssed
_ _ OEL dnies Ay | Z tesn
| A y _ | | Uoisses
_ s4dn a—»-| SNFJ PayipowuN e+ Axoid eseqeleq [«——»| uoneoyddy | PARY
| _ N | Z | N f Ld plomssed
| o¢olL ECOL [B90! _ ey0L _
_ | _ | L1osn
| _ | |
RS T PR == | U OO [—————— >
7 ... R 1=ST [[1 _ |

4/09

U.S. Patent Jul. 21, 2015 Sheet 2 of 8 US 9,087,212 B2

C BEGIN)

INTERCEPT SQL QUERY
200

A

MODIFY SQL QUERY FROM APPLICATION
202

A

(OPTIONALLY) ADJUST ENCRYPTION
204

A 4

SEND MODIFIED QUERY TO SERVER
205

Y

OBTAIN QUERY RESULTS
206

Y

DECRYPT RESULTS
208

4

RESULTS TO APPLICATION
210

v
(eno)

FIG. 2

US 9,087,212 B2

Sheet 3 of 8

Jul. 21, 2015

U.S. Patent

Ve DIA

0967% | 199LX | €a1px | c1egx || $o7ox | v690x |zsazx|gorzx ooy ||z
youva§-70 |p10-z2 | b2-20 | AI-2D || PPV-10 | P10-1D [ba- 10 |a1- 1D “awnn || a1

121991 saadkopduyy
£ DId
ppy uoi() PO UOIU() by uoruy
4) (, O
N ™
ﬁ anpea Aue u ﬁ anfeA Aue w
ppPe -NOH
ol oSuex urof Aypenba :NIO[f
‘NIO(-HdO
Y24035 UOIU() 9 y uorjo3[es Anpenba : 1
I9p10 :HdO ~ o
E . J N Areuonouny ou :ANY y
Areuonpuny ou (N
- J

HOYUVAS

US 9,087,212 B2

Sheet 4 of 8

Jul. 21, 2015

U.S. Patent

v OIA

C I s
praapuas pridos | pissu
404, c ors8swarid 31qe]
ooy, I Isosualid I1qe],
UIDULIST | PLIIST J1zeLcx | vyzgoox ¢
4251 IqR], 1x918s1U 1algns | prosut
s&swared 91qe],

ISOUIRU UWN[OO PIZIWAUOUER JNOYIIM ‘SIudjuod 9[qe) s[dwexs

((xasn preasn) YOI SAVAIS (1asn-fedrsfyd swvutasn)
(GGT)IBYDIRA 2WUDULISN JUL PLI2SHT

) 4251 TVL HIVAID

‘((Bsw prSsut) JOA SAVAAS (19sn pridou)
‘(3swt pr3sut) YOI SIIVAS (19sn praapuas)
WI praapuas il pridos “yut prdsuw

) ors&suazd FIGVL AIVEID

{((@Bswx prSsut) YOI DN 1X%9) Jx218s1
‘(Bswr pr3sut) YOA INH (SST)Teydres walgns
qur prdsw

) s8suiard IV ALVAID

{8sur “Isn FIAIONIIAA
CTYNYALXH mosneansigqd gd A LONIId

US 9,087,212 B2

Sheet 5 of 8

Jul. 21, 2015

U.S. Patent

$ OIAd

{((ureu-wmaoy pruntof) YOI INAH (SSg)reydiea auivu
qut puuniof) winiof FIGVL AIVAED

{((3sod wmnaoy prurn.tof) YOI INI 1% 1sod
“wur prunof ‘yar prasod) sisod TGV AIVAID

‘(p1=pruoydo g1
(Qureu-winaoj prunof) JOA SAVAIS (dnoas prdno.s)
‘0g=pruondo g1
(sod-wn.xoy prunsof) YOI SAVAIS (dnoas p1dno.s)
“qur pruondo Yt priundof W prdnold) sdnoi3pov J1IVIL AIVIID

“((dnoi3 p1dno.3) YOI S VHIS (F9sn priasm)
I prdnodd I priasn) dnoidiasn IIIVL AIVIID

{((1asn priasn) YOI SYVAIS (asnedisAyd swvutasn)
‘(GG)IBYDIBA 2UUDULISH VUL PLIISH) S42sn FTAVL dIVTID

SQureuwnaoj ‘psod-wmnaof ‘dnois aesn FIX LONDIA
"TVNIALXH Josn edrsiyd X LONTId

US 9,087,212 B2

Sheet 6 of 8

Jul. 21, 2015

U.S. Patent

Z ‘DIA
0b8°8Z1 _ Z91°ST _ €61°1 K1onb ur pes()
OTTYHTT | YSTLLT | 84S°S BrIAyds joduro))

summjo) | s9[qB], | soseqeye(|

9 ‘DIA

{0 = (PIPRIU0D = proviuord (INV prded = priadopdd

TIAHAM 2 1o1f/uop12dvd INOUA (+)INNOD LOATAS)
/. UonOUNY TOS B UGS ./ :(PIIdEIU0D ‘praaded) PIFUOHON

{((prpovauos ‘priadopd)PIuo)oN AT (M91A31 priadpd)

AOT SIVAIS (108110 pp1ovjuod12quid W) d)

‘(MIIAM prradpd) YOI DNH 1¥31 DJ QL SIUIUUIOD

‘(MM praadod) YOI DNHA It PI1aM21494

‘“qur pliadod
) ma1aiadod IGVL AIVAID
“(yut pppovpuod ui priadod) pofuo)42dod ATV AIVAYD
(ut ppovuod) 2qud I T9VL HIVAIO

{((39B3U0d Pr1ovIU09) YOI SAVAS (Fsnedsiyd ymuea)
“(0TT)TeYDIeA U UL pp1opiuod) ofuppoviuo) FIGVL AIVAID

$MITADT PRI FIX LONTH
IVYNYALXA Jsoredrsfyd gdA LONII

US 9,087,212 B2

Sheet 7 of 8

Jul. 21, 2015

U.S. Patent

6 ‘DIA

— z Al 0 661 0 v 0 €L €L1 Ar4d SUIRIUOD SWEU [0 *

— € 16T 149 S12T (49 0 0 126°C 1267 |#4211100 SUIRIUOD SWRU “[0D *

— 0 16 0 9¢6°1 0 0 [4 620°C 620°C §spd SUreIuod SWEU "J0d °

— €16°8 0se'se 86¢ 80078 | SETT 9101 [VAS 0v8°8T1 O¥8°gzl| Suisseooxd Axoxd-ur yuim -
- IET°Cl ZIT'vE 0SE €50°08 | SzI'T 610°1 760°1 0¥8°8T1 O¥8'STI npa 11w Tbs woiy aoe1]
- 8 61 0 £9 0 8 0 6 6 D-Od.L
Ve I ¥ 4 ¢ (4 0 4 Cl 94 1epused-dHd
| ¥A! [4 ¥ 0 L 0 0 0 €l S <0°9 LIN
0/ 6T¢ 61 4! < 0z¢ £ 0 L 996 L6T°1 WNFUdQ
76/ ¥6 4 9 0 $6 z 0 0 €01 90L Apdde-peis
81/81 4 I I 81 I [4 0 (44 P0C JADI0H
9/9 I I 0 K4 0 I 0 €2 €9 ggdyd

HOIH e s[02 | AdQ 1dd HOUVAS dNY | HOAVAS WOH xqureld U 10} *S[02 wonesndd
QALISUIS JSOTA] IDUHUIA YA "S[02 Jxjure|d-uoN SpaaN SPIIN SPaaN JOPISUO)) [BJOL neatiedy

8 OIA
perdAous s9[qes oyl [[€ Ul SPIRY AUl (B 176 0 0 (-ound 918uwis) D-Dd4I
SMIIADI ‘SUOIBPUSUILIODAI ‘(£) S9I028 (19) sopels Juepnis €01 sour ¢ (onbwun ¢1) 1171 Ajdde-pesd
smataar ‘uonjeuriojut 1aded pue juojuoo taded 77 sourf g (enbrun 1) 67 dADIOH
sumio] ‘sysod ‘(3oolgns Quejuno) sefessow oyealid (g7 soury / (enbmwun 17) 1¢ ggdyd
SPIRY yous Jo sapduwexad pue ‘paindas SPRY ANRISUIS IPOD IN0Io|/uio | suopejouny | uoneoddy

U.S. Patent Jul. 21, 2015 Sheet 8 of 8 US 9,087,212 B2
PROCESSOR VOLATILE MEMORY QUTPUT DEVICE
1002 1004 1005
< P
NON-VOLATILE MEMORY
1006 Gl
1008

COMPUTER INSTRUCTIONS

1012

OPERATING SYSTEM

1016

DATA
1018

FIG. 10

US 9,087,212 B2

1
METHODS AND APPARATUS FOR
SECURING A DATABASE

BACKGROUND

Asisknown in the art, online applications are vulnerable to
theft of sensitive information because adversaries can exploit
software bugs to gain access to private data, and because
curious or malicious administrators may capture and leak
data. Theft of private information is a significant problem,
particularly for online applications. An adversary can exploit
software vulnerabilities to gain unauthorized access to serv-
ers; curious or malicious administrators at a hosting or appli-
cation provider can snoop on private data; and attackers with
physical access to servers can access all data on disk and in
memory.

One known approach to reduce the damage caused by
server compromises is to encrypt sensitive data stored on a
server and run all computations (application logic) on clients.
Unfortunately, several important applications do not lend
themselves to this approach, including database-backed web
sites that process queries to generate data for the user, and
applications that compute over large amounts of data. Even
when this approach is tenable, converting an existing server-
side application to this form can be difficult. Another
approach would be to consider theoretical solutions such as
fully homomorphic encryption, which allows servers to com-
pute arbitrary functions over encrypted data, while only cli-
ents see decrypted data. However, fully homomorphic
encryption schemes are still prohibitively expensive by orders
of magnitude.

As is known in the art, SQL (Structured Query Language)
is a programming language designed for managing data in
relational database management systems (RDBMS). SQL
includes data insert, query, update and delete, schema cre-
ation and modification, and data access control. The SQL
language is sub-divided into several language elements,
including: clauses, which are constituent components of
statements and queries, expressions, which can produce
either scalar values or tables with columns and rows of data,
predicates, which specify conditions that can be evaluated to
SQL three-valued logic or Boolean, and queries to retrieve
data based on specific criteria, and statements. Queries are
performed with a declarative SELECT statement to retrieve
data from one or more tables, or expressions. Queries allow
the user to describe desired data, leaving the database man-
agement system (DBMS) responsible for planning, optimiz-
ing, and performing the physical operations necessary to pro-
duce that result as it chooses.

SUMMARY

Exemplary embodiments of the invention provide methods
and apparatus for processing database queries. An exemplary
method comprises encrypting a database in a database system
using two or more encryption schemes, with each data item in
the database encrypted using at least one of the two or more
encryption schemes, and selecting for each data item speci-
fied in an input query from an application, one of the encryp-
tion schemes. The exemplary method further includes trans-
forming the input query to an encrypted query using the
selected encryption scheme for each data item specified in the
query, and executing the encrypted query at the database
system, without decrypting any of the encrypted data items to
plaintext at the database system, to produce one or more
encrypted results. The exemplary method also includes
decrypting the encrypted results using the selected decryption

10

15

20

25

30

35

40

45

50

55

60

65

2

scheme for each data item in the encrypted results to generate
decrypted results, and returning the decrypted results to the
application.

In one embodiment, the selection and transforming steps
above are performed in a database proxy placed between the
application and the database server. In another embodiment,
these steps are done in the application or in an Object-Rela-
tional Mapper (ORM) layer or library, for example. In yet
another embodiment, these steps are performed in a database
server. It is understood that a variety of alternative embodi-
ments are contemplated to meet the needs of a particular
application.

Itis understood that the step of selecting refers to data items
“specified in” a query, meaning data items directly mentioned
in the query, such as a value of a record, as well as data items
specified by reference, for example in a predicate. A relational
query language such as SQL allows queries to refer to data
items in different ways, and “specified in” a query encom-
passes all these ways of specifying data items.

Itis understood that the term “encryption scheme” includes
some subset of RND, DET, HOM, OPE, JOIN, SEARCH
capabilities and can include additional capabilities. Two dif-
ferent schemes that provide the same capability would be
considered equivalent. Moreover, it is understood that using
multiple encryption schemes, storing them separately or in
onion layers as described below, may be performed with
schemes that provide capabilities other than the ones listed
above. Additional encryption schemes, allowing the database
server to perform other kinds of computations, are also pos-
sible.

In one aspect of the invention, a method comprises storing
encrypted data in a database management system with layers
of'encryption to support different functionality for a first item
of data, executing a query from an application such that
encryption of the data is transparent to the application by:
intercepting the query at a proxy between the application and
the database management system, and, modifying the query
to encrypt data to the database management and decrypt data
from the database management system to provide query
results to the application, selecting a first one of the layers of
encryption based upon the query, and adjusting the layers of
encryption based upon the query.

The method can further include one or more of the follow-
ing features: selecting the first one of the layers of encryption
based upon the operations required by the query, the layers of
encryption include increasing a level of functionality of the
encryption moving toward inner layers of the encryption lay-
ers, the layers of encryption include increasing a level of
security of the encryption moving toward outer layers of the
encryption layers, providing a cryptographic primitive to
enable the proxy to provide a token to the database manage-
ment system for adjusting an encryption of a stored first
column initially encrypted with a first key to an encryption
with a second key different than the first key, the database
management system does not learn the first or second keys or
content of the data in the first column, providing an annota-
tion language to capture application access control at a granu-
larity of the query, including enforcing application access
control cryptographically by encrypting data items in a way
decryptable only with user passwords using key chaining,
and/or receiving a user-defined function to enable the data-
base management system to process encrypted data and unen-
crypted data without change to the database management
system.

In another aspect of the invention, an article comprises: a
computer-readable medium containing non-transitory stored
instructions that enable a machine to perform: storing

US 9,087,212 B2

3

encrypted data in a database management system with layers
of'encryption to support different functionality for a first item
of data, executing a query from an application such that
encryption of the data is transparent to the application by:
intercepting the query at a proxy between the application and
the database management system, and modifying the query to
encrypt data to the database management and decrypt data
from the database management system to provide query
results to the application, selecting a first one of the layers of
encryption based upon the query, and adjusting the layers of
encryption based upon the query.

The article can further include one or more of the following
features: instructions for selecting the first one of the layers of
encryption based upon the operations required by the query,
the layers of encryption include increasing a level of func-
tionality of the encryption moving toward inner layers of the
encryption layers, the layers of encryption include increasing
a level of security of the encryption moving toward outer
layers of the encryption layers, instructions for providing a
cryptographic primitive to enable the proxy to provide a token
to the database management system for adjusting an encryp-
tion of a stored first column initially encrypted with a first key
to an encryption with a second key different than the first key,
the database management system does not learn the first or
second keys or content of the data in the first column, instruc-
tions for processing an annotation language to capture appli-
cation access control at a granularity of the query, instructions
for enforcing application access control cryptographically by
encrypting data items in a way decryptable only with user
passwords using key chaining, and/or instructions for receiv-
ing a user defined function to enable the database manage-
ment system to process encrypted data and unencrypted data
without change to the database management system.

In a further aspect of the invention, a system to maintain
confidentiality of data in a database management system
comprises a key setup module for coupling to an application,
a database proxy for coupling to the application, the database
proxy to intercept SQL queries from the application and
change the queries to encrypt data to a database management
system and decrypt data from the database management sys-
tem, an active key module coupled to the database proxy, the
active key module containing information only for users that
are logged on to the application, annotated schema coupled to
the database proxy to define principals having keys in the
active key module, the annotated schema to use the keys to
decrypt different parts of the database, a defined function
module for coupling to a database management system, the
defined function module to perform cryptographic operations
on the data in the database management system, and an
encrypted key table for coupling to the database management
system. The system can further include the database proxy
comprising onions of encryption to provide adjustable query-
based encryption, and/or keys in the active key module are
chained to user passwords so that the data in the database
management system can only be decrypted for users that are
logged into the application.

In another aspect of the invention, a method comprises
receiving a query from an application, intercepting the query
at a proxy, rewriting, by the proxy, the query to anonymize
each table and column name, encrypting constants in the
query using a master key with an encryption scheme based
upon the operations for the query, determining, by the proxy,
whether the database management system should be given
keys to adjust encryption layers before executing the query,
issuing a modified query at the database management system
that invokes a user defined function to adjust an encryption
layer of the appropriate columns, forwarding, by the proxy,

10

15

20

25

30

35

40

45

50

55

60

65

4

the rewritten query to the database management system,
receiving query results from the database management sys-
tem, and decrypting, by the proxy, the query results and
returning the decrypted query results to the application.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing features of this invention, as well as the
invention itself, may be more fully understood from the fol-
lowing description of the drawings in which:

FIG. 1 is a schematic representation of an exemplary sys-
tem that provides defense against attacks for applications
backed by SQL (Structured Query Language) databases;

FIG. 2is aflow diagram showing an exemplary sequence of
steps for implementing data confidentiality;

FIG. 3 is a schematic representation of exemplary layers of
encryption and functionality;

FIG. 3A is a tabular representation of an exemplary data
layout;

FIG. 4 is an exemplary schema with annotation to secure
private messages;

FIG. 5 is an exemplary annotated schema for securing
access to posts;

FIG. 6 is an exemplary annotated schema for securing
reviews;

FIG. 7 is atabular representation of a databases, tables, and
columns for exemplary server;

FIG. 8is a tabular representation of annotations to be added
by a programmer to secure certain fields for an exemplary
environment;

FIG. 9 is a tabular representation of steady-state onion
levels for database columns required for various applications;
and

FIG. 10 is a schematic representation of an exemplary
computer that can form a portion of exemplary embodiments
of the invention.

DETAILED DESCRIPTION

In general, exemplary embodiments of the invention pro-
vide a system that provides defense against attacks for appli-
cations backed by SQL (Structured Query Language) data-
bases. SQL queries are executed over encrypted data using a
collection of efficient SQL-aware encryption schemes. Mul-
tiple SQL-aware encryption embodiments are stacked
together using onions of encryption. As a result, a database
administrator cannot access decrypted data.

In one embodiment, the system can chain encryption keys
to user passwords, so that a data item can be decrypted only by
using the password of one ofthe users with access to that data.
Even if all servers are compromised, an adversary cannot
decrypt the data of any user who is not logged in.

FIG. 1 shows an exemplary embodiment of a database
system 100 providing confidentiality in accordance with
exemplary embodiments of the invention. A DBMS (database
management system) 102 is connected to a separate applica-
tion server 104, which runs the application code and issues
DBMS queries on behalf of one or more users. Queries are
executed over encrypted data. As is known, SQL uses a well-
defined set of operators. In accordance with exemplary
embodiments of the invention, most of the commonly used
SQL operators can be supported efficiently over encrypted
data, as described more fully below.

The system 100 includes a proxy server 106 coupled
between the DBMS server 102 and the application server 104.
Users 108 are connected to the application server 104. It is
understood that the coupling does not need to be strong; it can

US 9,087,212 B2

5

be over the Internet. It is further understood that the applica-
tion server and the user computers can be the same. The
system utilizes user-defined functions (UDFs) 102¢, which
are described below, to perform cryptographic operations in
the DBMS 102. It is understood that rectangular and rounded
boxes represent processes and data, respectively. Vertical
dashed lines indicate separation between user computers 108,
the application server 104, a server running the database
proxy 106, which may be the same as the application server,
and the DBMS server 102.

The application server 104 includes an application 104a
and an optional key setup module 1045. The database proxy
server 106 includes a database proxy 106a coupled to an
active key module 130 and, optionally, an annotated schema
1065. The DBMS server 102 includes an (unmodified)
DMBS 1024 and encrypted data 120. An optional encrypted
key table 1025 and UDFs 102¢ can be coupled to the DBMS
102a4.

Two examples of threats addressed by the inventive system
100 are shown as dotted lines: Threat 1 and Threat 2. In Threat
1, a curious database administrator with complete access to
the DBMS server 102 snoops on private data, in which case
the system prevents the DBA from accessing any private
information. In Threat 2, an adversary gains complete control
over both the software and hardware of the application 104,
proxy 106, and DBMS servers 102, in which case the system
ensures the adversary cannot obtain data belonging to users
that are not logged in (e.g., user 2).

FIG. 2, in combination with FIG. 1, shows an exemplary
high-level sequence of steps for implementing database con-
fidentiality in accordance with exemplary embodiments of
the invention. In step 200, a database proxy 106 intercepts
SQL queries and rewrites the queries in step 202 to execute on
encrypted data. The encryption level is optionally adjusted in
step 204 as necessary. The modified query is sent to the server
in step 205 and the server returns the query results in step 206.
In step 208, the proxy 106 decrypts the query result from the
database and sends the plaintext query result to the initiating
application 104. In general, the database proxy 106 encrypts
and decrypts all data, and changes some query operators,
while preserving the semantics of the query. The DBMS
server 102 never receives decryption keys to the plaintext so
it never sees sensitive data, ensuring that a curious DBA
cannot gain access to private information (threat 1). The
above is described in further detail below.

To guard against application, proxy, and DBMS server
compromises (as in threat 2), developers annotate their SQL
schema to define different principals, whose keys will allow
decrypting different parts of the database. They also make a
small change to their applications to provide encryption keys
to the proxy, as described below. The proxy 106 determines
what parts of the database should be encrypted under what
key. The result is that the system guarantees the confidenti-
ality of data belonging to users that are not logged in during a
compromise (e.g., user 2 in FIG. 1), and who do not log in
until the compromise is detected and fixed by the administra-
tor.

One challenge in combating these threats lies in the tension
between minimizing the amount of confidential information
revealed to the DBMS server and the ability to efficiently
execute a variety of queries. Conventional approaches for
computing over encrypted data are either too slow or do not
provide adequate confidentiality. On the other hand, encrypt-
ing data with a strong and efficient cryptosystem, such as
AES, would prevent a DBMS server from executing many
SQL queries, such as queries that ask for the number of
employees in the “sales” department or for the names of

10

20

40

45

50

6

employees whose salary is greater than $60,000. In this case,
the only practical solution would be to give the DBMS server
access to the decryption key, but that would allow an adver-
sary to also gain access to all data.

Another challenge is to minimize the amount of data leaked
when an adversary compromises the application server in
addition to the DBMS server. Since arbitrary computation on
encrypted data is not practical, the application must be able to
access decrypted data. The difficulty is ensuring that a com-
promised application can obtain only a limited amount of
decrypted data. A naive solution of assigning each user a
different database encryption key for their data does not work
for applications with shared data, such as bulletin boards and
conference review sites.

Another challenge is to minimize the amount of change to
existing database management systems systems, to make the
system easier to deploy on different database management
systems and to take advantage of their existing optimizations.

Exemplary embodiments of the invention address the chal-
lenged discussed above. In one aspect of the invention, the
inventive system executes SQL queries over encrypted data
by using a SQL-aware encryption strategy, which leverages
the fact that all SQL queries are made up of a well-defined set
of primitive operators, such as equality checks, order com-
parisons, aggregates (sums), and joins. By adapting known
encryption schemes (for equality, additions, and order
checks) and using a new privacy-preserving cryptographic
method for joins, the system encrypts each data item in a way
that allows the DBMS to execute on the transformed data. The
system is efficient because it mostly uses symmetric-key
encryption, and avoids fully homomorphic encryption. In one
embodiment it runs on unmodified DBMS software (by using
user-defined functions and SQL operators). In another
embodiment, the functionality required on the database
server can be implemented in the DBMS server software.

Another aspect of the invention comprises adjustable
query-based encryption. Some encryption schemes leak more
information than others about the data to the DBMS server,
but are required to process certain queries. To avoid revealing
all possible encryptions of data to the DBMS a priori, exem-
plary embodiments of the system carefully adjust the SQL-
aware encryption scheme for any given data item, depending
on the queries observed at run-time. To implement these
adjustments efficiently, the system uses onions of encryption,
which are a novel way to compactly store multiple ciphertexts
within each other in the database and avoid expensive re-
encryptions. Onions of encryption using layered encryption
are particularly useful if the queries are not known in advance
ofrun-time. However, if the queries are known in advance, for
example by analyzing the application code using automated
software or manually, it is possible to arrange for the queries
to be transformed and the encryption scheme selected without
decrypting onion layers at run-time.

A further aspect of the invention comprises chaining
encryption keys to user passwords, so that each data item in
the database can be decrypted only through a chain of keys
rooted in the password of one of the users with access to that
data. As a result, if the user is not logged into the application,
and if the adversary does not know a user password, the
adversary cannot decrypt the data for that user, even if the
DBMS and the application server are fully compromised. To
construct a chain of keys that captures the application’s data
privacy and sharing policy, exemplary embodiments of the
system allow the developer to provide policy annotations over
the application’s SQL schema, specifying which users (or
other principals, such as groups) have access to each data
item.

US 9,087,212 B2

7

In an exemplary actual implementation, a system sup-
ported operations over encrypted data for 99.5% of the 128,
840 columns seen in a trace. Evaluation showed low over-
head, reducing throughput by 14.5% for a web forum
application, and by 26% for queries from TPC-C, compared
to unmodified MySQL.. In addition, chaining encryption keys
to user passwords requires 11-13 unique schema annotations
to enforce privacy policies on more than 20 sensitive fields
and 2-7 lines of source code changes for three multi-user web
applications, as described more fully below.

Inthreat 1, the system 100 guards against a curious DBA or
other external attacker with full access to the data stored in the
DBMS server 102. The attacker is assumed to be passive, i.e.,
wants to learn confidential data, but does not change queries
issued by the application 104, query results, or the data in the
DBMS 102. This threat includes DBMS software compro-
mises, root access to DBMS machines, and even access to the
RAM of physical machines. With the rise in database con-
solidation inside enterprise data centers, outsourcing of data-
bases to public cloud computing infrastructures, and the use
of third-party DBAs, this threat is increasingly important.

The system 100 aims to protect data confidentiality against
this threat by executing SQL queries over encrypted data 120
onthe DBMS server 102. The proxy 106 uses secret keys 130
to encrypt all data inserted or included in queries issued to the
DBMS 102. The system allows the DBMS server 102 to
perform query processing on encrypted data 120 as it would
on an unencrypted database, by enabling it to compute certain
functions over the data items based on encrypted data. For
example, if the DBMS needs to perform a GROUP BY on
column ¢, the DBMS server 102 determines which items in
that column are equal to each other, but not the actual content
of each item. Therefore, the proxy 106 needs to enable the
DBMS server 102 to determine relationships among data
necessary to process a query. By using SQL-aware encryption
that adjusts dynamically to the queries presented, the system
is careful about what relations it reveals between tuples to the
server. For instance, if the DBMS needs to perform only a
GROUP BY on a column ¢, the DBMS server 102 should not
know the order of the items in column ¢, nor should it know
any other information about other columns. If the DBMS is
required to perform an ORDER BY, or to find the MAX or
MIN, the system reveals the order of items in that column, but
not otherwise.

The inventive system 100 provides confidentiality for data
content and for names of columns and tables; the system does
not hide the overall table structure, the number of rows, the
types of columns, or the approximate size of data in bytes.
The system does reveal to the DBMS server 102 relationships
among data items that correspond to the classes of computa-
tion that queries perform on the database, such as comparing
items for equality, sorting, or performing word search. In one
embodiment, the granularity at which the system allows the
DBMS to perform a class of computations is an entire column
(or a group of joined columns, for joins), which means that
even if a query requires equality checks for a few rows,
executing that query on the server would require revealing
that class of computation for an entire column. An alternative
embodiment could use a different granularity such as indi-
vidual rows.

In exemplary embodiments of the invention, the system
provides a number of properties. For example, sensitive data
is never available in plaintext at the DBMS server 102. The
information revealed to the DBMS server 102 depends on the
classes of computation required by the application’s queries,
subject to constraints specified by the application developer
in the schema, for example: 1) if the application 104 requests

10

15

20

25

30

35

40

45

50

55

60

65

8

no relational predicate filtering on a column, nothing about
the data content leaks (other than its size in bytes); b) if the
application 104 requests equality checks on a column, the
proxy 106 reveals which items repeat in that column (the
histogram), but not the actual values, and ¢) if the application
104 requests order checks on a column, the proxy 106 reveals
the order of the elements in the column.

Another property provides that the DBMS server 102 can-
not compute the (encrypted) results for queries that involve
computation classes not requested by the application 104.

Threat 2 is now described in further detail where the appli-
cation server 104, proxy 106, and DBMS server 102 infra-
structures may be compromised arbitrarily. The approach in
threat 1 is insufficient because an adversary can now get
access to the keys used to encrypt the entire database. To
address threat 2, the system encrypts different data items
(e.g., data belonging to different users) with different keys. To
determine the key that should be used for each data item,
developers annotate the application’s database schema to
express finer-grained confidentiality policies.

A curious DBA still cannot obtain private data by snooping
on the DBMS server (threat 1), and in addition, an adversary
who compromises the application server or the proxy can now
decrypt only data of currently logged-in users (whose keys
are stored in the proxy). Data of currently inactive users
would be encrypted with keys not available to the adversary,
and would remain confidential. In this configuration, the sys-
tem provides strong guarantees in the face of arbitrary server-
side compromises, including those that gain root access to the
application or the proxy. The system leaks at most the data of
currently active users for the duration of the compromise,
even if the proxy behaves in a Byzantine fashion. By “dura-
tion of a compromise”, we mean the interval from the start of
the compromise until any trace of the compromise has been
erased from the system. For a read SQL injection attack, the
duration ofthe compromise spans the attacker’s SQL queries.
In the above example of an adversary changing the email
address of a user in the database, we consider the system
compromised for as long as the attacker’s email address per-
sists in the database.

As noted above, the system executes SQL queries over
encrypted data. For Threat 1, the DBMS machines and
administrators are not trusted, but the application and the
proxy are trusted. The system enables the DBMS server to
execute SQL queries on encrypted data almost as if it were
executing the same queries on plaintext data so that existing
DBMSes do not need to be changed. The DBMS query plan
for an encrypted query is typically the same as for the original
query, except that the operators comprising the query, such as
selections, projections, joins, aggregates, and orderings, are
performed on ciphertexts, and use modified operators in some
cases. The proxy stores a secret master key MK, the database
schema, and the current encryption layers of all columns. The
DBMS server sees an anonymized schema (in which table
and column names are replaced by opaque identifiers),
encrypted user data, and some auxiliary tables. The system
also equips the server with specific user-defined functions
(UDFs) that enable the server to compute on ciphertexts for
certain operations.

In general, processing a query in the embodiment involving
a database proxy involves four steps:

1. The application issues a query, which the proxy inter-
cepts and rewrites: it anonymizes each table and column
name, and, using the master key MK, encrypts each constant
in the query with an encryption scheme best suited for the
desired operation.

US 9,087,212 B2

9

2. The proxy checks if the DBMS server should be given
keys to adjust encryption layers before executing the query,
and if so, issues an UPDATE query at the DBMS server that
invokes a UDF to adjust the encryption layer of the appropri-
ate columns.

3. The proxy forwards the encrypted query to the DBMS
server, which executes it using standard SQL (occasionally
invoking UDFs for some operations such as aggregation or
keyword search).

4. The DBMS server returns the (encrypted) query result,
which the proxy decrypts and returns to the application.

Exemplary embodiments of the invention can utilize vari-
ous encryption types including a number of existing crypto-
systems, scheme optimizations, and a novel cryptographic
primitive for joins. For each encryption type, we explain the
security property that the system requires from it, its func-
tionality, and how it is implemented.

Random (RND) provides maximum security: indistin-
guishability under an adaptive chosen-plaintext attack (IND-
CPA); the scheme is probabilistic, meaning that two equal
values are mapped to different ciphertexts with overwhelm-
ing probability. On the other hand, RND does not allow any
computation to be performed efficiently on the ciphertext. An
efficient construction of RND is to use a block cipher like
AES or Blowfish in CBC mode together with a random ini-
tialization vector (IV). (In one embodiment, AES is primarily
used, except for integer values, where Blowfish is used for its
64-bit block size because the 128-bit block size of AES would
cause the ciphertext to be significantly longer). Since, in this
threat model, the system assumes the server does not change
results, the system does not require a stronger IND-CCA2
construction (which would be secure under a chosen-cipher-
text attack). However, it would be straightforward to use an
IND-CCA2—secure implementation of RND instead, such
as a block cipher in UFE mode, if needed.

Deterministic (DET) encryption has a slightly weaker
guarantee, yet it still provides strong security: it leaks only
which encrypted values correspond to the same data value, by
deterministically generating the same ciphertext for the same
plaintext. This encryption layer allows the server to perform
equality checks, which means it can perform selects with
equality predicates, equality joins, GROUP BY, COUNT,
DISTINCT, etc. In cryptographic terms, DET should be a
pseudo-random permutation (PRP). For 64-bit and 128-bit
values, we use a block cipher with a matching block size
(Blowfish and AES respectively); we make the usual assump-
tion that the AES and Blowfish block ciphers are PRPs.
Smaller values could be padded out to 64 bits or encrypted
using the FFX mode, but for data that is longer than a single
128-bit AES block, the standard CBC mode of operation
leaks prefix equality (e.g., if two data items have an identical
prefix that is at least 128 bits long). To avoid this issue, one
can use AES with a variant of the CMC mode, which can be
approximately thought of as one round of CBC, followed by
another round of CBC with the blocks in the reverse order.
Since the goal of DET is to reveal equality, we use a zero [V
(or “tweak”) for our AES-CMC implementation of DET.

Order-preserving encryption (OPE) allows order relations
between data items to be established based on their encrypted
values, without revealing the data itself. If x<y, then OPEK
(x)<OPEK(y), for any secret key K. Therefore, if a column is
encrypted with OPE, the server can perform range queries
when given encrypted constants OPEK(c1) and OPEK(c2)
corresponding to the range [c1,c2]. The server can also per-
form ORDER BY, MIN, MAX, SORT, etc. OPE is a weaker
encryption scheme than DET because it reveals order. Thus,
the proxy will only reveal OPE-encrypted columns to the

10

15

20

25

30

35

40

45

55

60

10

server if users request order queries on those columns. OPE
has provable security guarantees: the encryption is equivalent
to a random mapping that preserves order.

Homomorphic encryption (HOM) is a secure probabilistic
encryption scheme (IND-CPA secure), allowing the server to
perform computations on encrypted data with the final result
decrypted at the proxy. While fully homomorphic encryption
may be prohibitively slow, homomorphic encryption for spe-
cific operations is efficient. To support summation, in one
embodiment a Paillier cryptosystem was implemented. With
Paillier, multiplying the encryptions of two values results in
an encryption of the sum of the values, i.e., HOM(x)- HOM -
(v)=HOM (x+y), where the multiplication is performed
modulo some public-key value. To compute SUM aggregates,
the proxy replaces SUM with calls to a UDF that performs
Paillier multiplication on a column encrypted with HOM.
HOM encryption can also be used for computing averages by
having the DBMS server return the sum and the count sepa-
rately, and for incrementing values (e.g., SET id=id+1),
described below. With HOM, the ciphertext is 2048 bits. In
theory, it should be possible to pack multiple values from a
single row into one HOM ciphertext for that row, which
would result in an amortized space overhead of 2x(e.g., a
32-bit value occupies 64 bits) for a table with many HOM-
encrypted columns.

In another aspect of the invention, a separate encryption
scheme allows equality joins between two columns, because
we use different keys for DET to prevent cross-column cor-
relations. JOIN also supports all operations allowed by DET,
and also enables the server to determine repeating values
between two columns. OPE-JOIN enables joins by order
relations. An inventive cryptographic scheme for JOIN is
provided, which is described below.

Word search (SEARCH) is used to perform searches on
encrypted text to support operations such as MySQL’s LIKE
operator. In one embodiment, a cryptographic protocol taught
by D. X. Song, D. Wagner, and A. Perrig, “Practical tech-
niques for searches on encrypted data,” Proceedings of the
21st IEEE Symposium on Security and Privacy, Oakland,
Calif., May 2000, is incorporated herein by reference is used.
The technique from Song et al. allows the proxy to encrypt
each word of a text and later to encrypt a word such that the
server can discover matches of the encrypted word in the
encrypted text. This protocol was used in a different way for
better security guarantees. More particularly, for each column
needing SEARCH, one can split the text into keywords using
standard delimiters (or using a special keyword extraction
function specified by the schema developer). We then remove
repetitions in these words, randomly permute the positions of
the words, and then encrypt each of the words using Song et
al.’s scheme, padding each word to the same size.

SEARCH is nearly as secure as RND: the encryption does
not reveal to the DBMS server whether a certain word repeats
in multiple rows if'the word has not yet been searched for, but
it leaks the number of keywords encrypted with SEARCH; an
adversary may be able to estimate the number of distinct or
duplicate words in a text (e.g., by comparing the size of the
SEARCH and RND ciphertexts for the same data).

When the user performs a query such as SELECT*FROM
messages WHERE msg LIKE “% alice %”, the proxy gives
the DBMS server a token, which is an encryption of “alice.”
The server cannot decrypt the token to figure out the under-
lying word. Using a user-defined function, the DBMS server
checks if any of the word encryptions in any message match
the token. In the inventive approach, all the server learns from
searching is whether a token matched a message or not, and
not where and how many times in the message it did. The

US 9,087,212 B2

11

server would learn the same information when returning the
result set to the users, so the overall search scheme reveals the
minimum amount of additional information needed to return
the result.

It should be noted that, when using the modified Song
scheme, the system only allows full-word keyword searches
for text search and it cannot support arbitrary regular expres-
sions. For applications that require searching for multiple
adjacent words, the system allows the application developer
to provide a new function, denoted tokenize, that splits any
message into the keywords the programmer desires to be
located during a search, even though this is not the default.
Most uses of LIKE can be supported by SEARCH with such
schema annotations. Of course, one can still combine mul-
tiple LIKE operators with AND and OR to check whether
multiple independent words are in the text.

In an exemplary embodiment, the system includes adjust-
able query-based encryption, which dynamically adjusts the
layer of encryption on the DBMS server. It is desirable to use
the most secure encryption schemes that enable running the
requested queries. For example, if the application issues no
queries that compare data items in a column, or that sort a
column, the column should be encrypted with RND. For
columns that require equality checks but not inequality
checks, DET suffices. However, the query set is not always
known in advance. Thus, an adaptive scheme that dynami-
cally adjusts encryption strategies is desired. In one embodi-
ment, each data item is encrypted in one or more onions: that
is, each value is dressed in layers of increasingly stronger
encryption, as illustrated in FIGS. 2 and 3.

A value encrypted using an onion of encryption is the result
of'a sequential application of encryption schemes: a message
to be encrypted is first encrypted with the first encryption
scheme in the sequence, then the resulting encryption is itself
encrypted with the second encryption, and so forth up to the
last encryption scheme in the sequence. The sequence of
encryption schemes in an onion have the property that the
top-most encryption scheme is the most secure, and the func-
tionality of the encryption schemes increases strictly with
encryption layers closer to the plaintext.

FIG. 3 shows an exemplary representation of onion encryp-
tion layers and the classes of computation they allow. Onion
names stand for the operations they allow at some of their
layers (Equality, Order, Search, and Addition). In practice,
some onions or onion layers may be omitted, depending on
column types or schema annotations provided by application
developers. DET and JOIN are often merged into a single
onion layer, since JOIN is a concatenation of DET and JOIN-
ADIJ. A random IV for RND, shared by the RND layers in Eq
and Ord, is also stored for each data item.

FIG. 3A shows an exemplary data layout at the server.
When the application creates the table shown on the left, the
table created at the DBMS server is the one shown on the
right. Ciphertexts shown are not full-length.

Each layer of each onion enables certain kinds of function-
ality as explained above. For example, outermost onion lay-
ers, such as RND and HOM, provide maximum security,
whereas inner layers such as OPE provide more functionality.
Multiple onions are needed in practice, both because the
computations supported by different encryption schemes are
not always strictly ordered, and because of performance con-
siderations (size of ciphertext and encryption time for nested
onion layers). Depending on the type of the data (and any
annotations provided by the application developer on the
database schema, as discussed below, the system may not
maintain all onions for each column. For instance, the Search
onion does not make sense for integers, and the Add onion

20

25

30

40

45

50

12

does not make sense for strings. For each layer of each onion,
the proxy 106 (FIG. 1) uses the same key for encrypting
values in the same column, and different keys across tables,
columns, onions, and onion layers. Using the same key for all
values in a column allows the proxy 106 to perform opera-
tions on a column without having to compute separate keys
for each row that will be manipulated. Finer-grained encryp-
tion keys can be used to reduce the potential amount of data
disclosure in case of an application or proxy server compro-
mise. Using different keys across columns prevents the server
from learning any additional relations. All of these keys are
derived from the master key MK. For example, for table t,
column ¢, onion o, and encryption layer 1, the proxy uses the
key

Kt,¢,0,1=PRP,x(table ¢,column c,onion o,layer),

ey
where PRP is a pseudorandom permutation (e.g., AES).

Each onion starts out encrypted with the most secure
encryption scheme (RND for onions Eq and Ord, HOM for
onion Add, and SEARCH for onion Search). As the proxy
receives SQL queries from the application, it determines
whether layers of encryption need to be removed. Given a
predicate P on column ¢ needed to execute a query on the
server, the proxy first establishes what onion layer is needed
to compute P on c. If the encryption of ¢ is not already at an
onion layer that allows P, the proxy strips off the onion layers
to allow P on ¢, by sending the corresponding onion key to the
server. The proxy never decrypts the data past the least-secure
encryption onion layer (or past some other threshold layer, if
specified by the application developer in the schema).

In one embodiment, the system implements onion layer
decryption using UDFs running on the DBMS server. For
example, in FIG. 3, to decrypt onion Ord of column 2 in table
1 to layer OPE, the proxy issues the following query to the
server using the DECRYPT_RND UDF:

UPDATE Table 1 SET

C2-Ord=DECRYPT_RND(K, C2-Ord, C2-1V),
where K is the appropriate key computed from Equation (1).
At the same time, the proxy updates its own internal state to
remember that column C2-Ord in Table 1 is now at layer OPE
in the DBMS. Each column decryption should be included in
a transaction to avoid consistency problems with clients
accessing columns being adjusted.

Note that onion decryption is performed entirely by the
DBMS server. In the steady state, no server-side decryptions
are needed, because onion decryption happens only when a
new class of computation is requested on a column. For
example, after an equality check is requested on a column and
the server brings the column to layer DET, the column
remains in that state, and future queries with equality checks
require no decryption. This property explains the relatively
modest overhead in the steady state: the server mostly per-
forms typical SQL processing.

Once the onion layers in the DBMS are at the layer neces-
sary to execute a query, the proxy transforms the query to
operate on these onions. In particular, the proxy replaces
column names in a query with corresponding onion names,
based on the class of computation performed on that column.
For example, for the schema shown in FIG. 3A, areference to
the Name column for an equality comparison will be replaced
with a reference to the C2-Eq column.

The proxy also replaces each constant in the query with a
corresponding onion encryption of that constant, based on the
computation in which it is used. For instance, if a query
contains WHERE Name="Alice’, the proxy encrypts ‘Alice’
by successively applying all encryption layers corresponding
to onion Eq that have not yet been removed from C2-Eq.

US 9,087,212 B2

13

Also, the server replaces certain operators with UDF-based
counterparts. For instance, the SUM aggregate operator and
the + column-addition operator are replaced with an invoca-
tion of a UDF that performs HOM addition of ciphertexts.
Equality and order operators (such as = and <) do not need
such replacement and can be applied directly to the DET and
OPE ciphertexts. Once the proxy has transformed the query,
it sends the query to the DBMS server, receives query results
(encrypted data), decrypts the results using the corresponding
onion keys, and sends the decrypted result to the application.

To understand query execution over ciphertexts, consider
the example schema shown in FIG. 3 A. Initially, each column
in the table is dressed in all onions of encryption, with RND,
HOM, and SEARCH as outermost layers, as shown in FIG. 3.
At this point, the server can learn nothing about the data other
than the number of columns, rows, and data size. To illustrate
when onion layers are removed, consider the query:

SELECT ID FROM Employees WHERE Name="Alice’,
which requires lowering the encryption of Name to layer
DET. To execute this query, the proxy first issues the query
UPDATE Table 1 SET

C2-Eq=DECRYPT_RND (K4 ¢ g, rams C2-Eq, C2-1V),
where column C2 corresponds to Name. The proxy then
issues SELECT C1-Eq, C1-IV FROM Table 1 WHERE
C2-Eq=x7 . .. d, where column C1 corresponds to ID, and
where x7 .. . dis the Eq onion encryption of “Alice” with keys
Koi.c2.80.50mva0d Ky o5 g, ppr (see FIGS. 3 and 3A). Note
that the proxy requests the random IV from column C1-1V in
order to decrypt the RND ciphertext from C1-Eq. Finally, the
proxy decrypts the results from the server using keys
Kn1.c1,zq.zn50 Kav,c1,84.087m 04 Ky 1 gy s0mv. Obtains the
result 23, and returns it to the application.

If the next query is SELECT COUNT(*) FROM Employ-
ees WHERE Name=‘Bob’, no server-side decryptions are
necessary, and the proxy directly issues the query SELECT
COUNT(*) FROM Table 1 WHERE C2-Eq=xbb . . . 4a,
where xbb . . . 4a is the Eq onion encryption of “Bob” using
Kni.c2,q.0m 04 Ky o3 5g.pET-

For write query execution, to support INSERT, DELETE,
and UPDATE queries, the proxy applies the same processing
to the predicates (i.e., the WHERE clause) as for read queries.
DELETE queries require no additional processing. For all
INSERT and UPDATE queries that set the value of a column
to a constant, the proxy encrypts each inserted column’s value
with each onion layer that has not yet been stripped off in that
column.

The remaining case is an UPDATE that sets a column value
based on an existing column value, such as salary=salary+1.
Such an update would have to be performed using HOM, to
handle additions. However, in doing so, the values in the OPE
and DET onions would become stale. In fact, any hypotheti-
cal encryption scheme that simultaneously allows addition
and direct comparison on the ciphertext is insecure: if a mali-
cious server can compute the order of the items, and can
increment the value by one, the server can repeatedly add one
to each field homomorphically until it becomes equal to some
other value in the same column. This would allow the server
to compute the difference between any two values in the
database, which is almost equivalent to knowing their values.

There are two approaches to allow updates based on exist-
ing column values. If a column is incremented and then only
projected (no comparisons are performed on it), the solution
is simple: when a query requests the value of this field, the
proxy should request the HOM ciphertext from the Add
onion, instead of ciphertexts from other onions, because the
HOM value is up-to-date. For instance, this approach applies
to increment queries in TPC-C. If a column is used in com-

10

15

20

25

30

35

40

45

50

55

60

65

14

parisons after it is incremented, the solution is to replace the
update query with two queries: a SELECT of'the old values to
be updated, which the proxy increments and encrypts accord-
ingly, followed by an UPDATE setting the new values. This
strategy works well for updates that affect a small number of
TOWS.

Other DBMS mechanisms, such as transactions and index-
ing, work the same way over encrypted data as they do over
plaintext, with no modifications. For transactions, the proxy
passes along any BEGIN, COMMIT, and ABORT queries to
the DBMS. Since many SQL operators behave differently on
NULLs than on non-NULL values, the system exposes
NULL values to the DBMS without encryption.

The DBMS builds indexes for encrypted data in the same
way as for plaintext. Currently, if the application requests an
index on a column, the proxy asks the DBMS server to build
indexes on that column’s DET, JOIN, OPE, or OPE-JOIN
onion layers (if they are exposed), but not for RND, HOM, or
SEARCH.

In one particular embodiment, there are two kinds of joins
are supported: equi-joins, in which the join predicate is based
on equality, and range joins, which involve order checks. To
perform an equi-join of two encrypted columns, the columns
should be encrypted with the same key so that the server can
see matching values between the two columns. At the same
time, to provide better privacy, the DBMS server should not
be able to join columns for which the application did not
request a join, so columns that are never joined should not be
encrypted with the same keys.

Ifthe queries that can be issued, or the pairs of columns that
can be joined, are known a priori, equi-join is easy to support:
the system can use the DET encryption scheme with the same
key for each group of columns that are joined together. One
challenging case is when the proxy does not know the set of
columns to be joined a priori, and hence does not know which
columns should be encrypted with matching keys.

A further aspect of the invention provides a novel crypto-
graphic primitive, JOIN-ADJ (adjustable join), which allows
the DBMS server to adjust the key of each column at runtime.
Intuitively, JOIN-ADI can be thought of as a keyed crypto-
graphic hash with the additional property that hashes can be
adjusted to change their key without access to the plaintext.
JOIN-ADJ is a deterministic function of its input, which
means that if two plaintexts are equal, the corresponding
JOIN-ADJ values are also equal. JOIN-ADI is collision-
resistant, and has a sufficiently long output length (192 bits) to
allow us to assume that collisions never happen in practice.
JOIN-ADJ is non-invertible, so one defines the JOIN encryp-
tion scheme as

JOIN(v)=JON-ADI(V)||DET(v),
where || denotes concatenation. This construction allows the
proxy to decrypt a JOIN(v) column to obtain v by decrypting
the DET component, and allows the DBMS server to check
two JOIN values for equality by comparing the JOIN-ADJ
components.

Each column is initially encrypted at the JOIN layer using
a different key, thus preventing any joins between columns.
When a query requests a join, the proxy gives the DBMS
server an onion key to adjust the JOIN-ADJ values in one of
the two columns, so that it matches the JOIN-ADIJ key of the
other column (denoted the join-base column). After the
adjustment, the columns share the same JOIN-ADIJ key,
allowing the DBMS serverto join them for equality. The DET
components of JOIN remain encrypted with different keys.

Note that the inventive adjustable join is transitive: if the
user joins columns A and B and then joins columns B and C,
the server can join A and C. However, the server cannot join

US 9,087,212 B2

15

columns in different “transitivity groups”. For instance, if
columns D and E were joined together, the DBMS server
would not be able to join columns A and D on its own.

After an initial join query, the JOIN-ADJ values remain
transformed with the same key, so no re-adjustments are
needed for subsequent join queries between the same two
columns. One exception is if the application issues another
query, joining one of the adjusted columns with a third col-
umn, which causes the proxy to readjust the column to
another join-base. To avoid oscillations and to converge to a
state where all columns in a transitivity group share the same
join-base, the system chooses the first column in lexico-
graphic order on table and column name as the join-base. For
n columns, the overall maximum number of join transitions is
n(n-1)/2.

For range joins, a similar dynamic re-adjustment scheme is
difficult to construct due to lack of structure in OPE schemes.
In an exemplary embodiment, the system requires that pairs
of columns that will be involved in such joins be declared by
the application ahead of time, so that matching keys are used
for layer OPE-JOIN of those columns; otherwise, the same
key will be used for all columns at layer OPE-JOIN.

In exemplary embodiments of the invention, elliptic-curve
cryptography (ECC) is used.

JOIN-ADJg,, is computed as JOIN-ADIx(v):=
PEPEE o, @
where K is the initial key for that table, column, onion, and
layer, P is a point on an elliptic curve (being a public param-
eter), and PRF ., is a pseudo-random function mapping val-
ues to a pseudorandom number, such as AES. (SHA(V)),
with K0 being a key that is the same for all columns and
derived from MK. The “exponentiation” is in fact repeated
geometric addition of elliptic curve points; it is considerably
faster than RSA exponentiation.

When a query joins columns ¢ and ¢', each having keys K
and K' at the join layer, the proxy computes AK=K/K' (in an
appropriate group) and sends it to the server. Then, given
JOIN-ADIJ(v) (the JOIN-ADJ values from column ¢') and
AK, the DBMS server uses a UDF to adjust the key in ¢' by
computing:

(JOIN- ADJ () = pX/PRE gHEKIK")

= PXPRE 00 = JOIN-ADJk ().

Now columns ¢ and ¢' share the same JOIN-ADIJ key, and the
DBMS server can perform an equi-join on ¢ and ¢' by taking
the JOIN-ADJ component of the JOIN onion ciphertext.

At ahigh level, the security of this scheme is that the server
cannot infer join relations among groups of columns that
were not requested by legitimate join queries, and that the
scheme does not reveal the plaintext.

Although in an exemplary embodiment the inventive sys-
tem can operate with an unmodified and unannotated schema,
as described above, its security and performance can be
improved through several optional optimizations, as
described below.

Application developers can specify the lowest onion
encryption layer that may be revealed to the server for a
specific column. In this way, the developer can ensure that the
proxy will not execute queries exposing sensitive relations to
the server. For example, the developer can specify that credit
card numbers should always remain at RND or DET.

Although the system can evaluate a number of predicates
on the server, evaluating them in the proxy can improve

10

15

20

25

35

40

45

50

55

60

16

security by not revealing additional information to the server.
One common use case is a SELECT query that sorts on one of
the selected columns, without a LIMIT on the number of
returned columns. Since the proxy receives the entire result
set from the server, sorting these results in the proxy does not
require a significant amount of computation, and does not
increase the bandwidth requirements. Doing so avoids reveal-
ing the OPE encryption of that column to the server.

In one particular embodiment, the system provides a train-
ing mode that allows a developer to provide a trace of queries
and get the resulting onion encryption layers for each field,
along with a warning in case some query is not supported. The
developer can then examine the resulting encryption levels to
understand what each encryption scheme leaks. If some onion
level is too low for a sensitive field, it can be arranged to have
the query processed in the proxy (as described above), or to
process the data in some other fashion, such as by using a
local instance of a DBMS.

In cases when an application performs infrequent queries
requiring a low onion layer (e.g., OPE), the system can be
extended to re-encrypt onions back to a higher layer after the
infrequent query finishes executing. This approach reduces
leakage to attacks happening in the time window when the
data is at the higher onion layer.

In some embodiments, performance optimizations can be
achieved with developer annotations. By default, the system
encrypts all fields and creates all applicable onions for each
data item based on its type. If many columns are not sensitive,
the developer can instead provide explicit annotations indi-
cating the sensitive fields, and leave the remaining fields in
plaintext.

If the developer knows some of the queries ahead of time,
as is the case for many web applications, the developer can
use the training mode described above to adjust onions to the
correct layer a priori, avoiding the overhead of runtime onion
adjustments. If the developer provides the exact query set, or
annotations that certain functionality is not needed on some
columns, the system can also discard onions that are not
needed (e.g., discard the Ord onion for columns that are not
used in range queries, or discard the Search onion for columns
where keyword search is not performed), discard onion layers
that are not needed (e.g., the adjustable JOIN layer, ifjoins are
known a priori), or discard the random IV needed for RND for
some columns.

The proxy spends a significant amount of time encrypting
values used in queries with OPE and HOM. To reduce this
cost, in one embodiment the proxy pre-computes (for HOM)
and caches (for OPE) encryptions of frequently used con-
stants under different keys. Since HOM is probabilistic,
ciphertexts cannot be reused. Therefore, in addition, the
proxy pre-computes HOM’s Paillier r” randomness values for
future encryptions of any data. This optimization reduces the
amount of CPU time spent by the proxy on OPE encryption,
and assuming the proxy is occasionally idle to perform HOM
pre-computation, it removes HOM encryption from the criti-
cal path.

As described above, user defined functions (UDFs) are
used to enable the DBMS server to compute certain functions
on encrypted data or to adjust the encryption scheme. UDFs
are a standard component of the interface of common DBM-
Ses. In one embodiment, the following user defined functions
have been defined:

DECRYPT_RND(key, ciphertext, salt)

DECRYPT_RND receives as inputs the key for a certain

RND layer of a database column, an encrypted value
from the database denoted ‘ciphertext’, and some salt

US 9,087,212 B2

17

associated to the ciphertext also from the database. It
applies the decryption algorithm of the RND scheme
and returns the result.

DECRYPT_DET(key, ciphertext)

DECRYPT_DET receives as inputs the key for the DET
layer of a database column and an encrypted value from
the database called ‘ciphertext’. It decrypts the cipher-
text using the decryption algorithm of the DET scheme
and returns the result.

DECRYPT_OPE(key, ciphertext)

DECRYPT_OPE receives as inputs the key for a certain
onion layer and an encrypted value from the database
called ‘ciphertext’. It decrypts the ciphertext using the
decryption algorithm of the OPE scheme and returns the
result.

SEARCH(token, ciphertext)

SEARCH receives as inputs a token that corresponds to an
encrypted keyword based on the modified Song scheme
and an encrypted text from the database, denoted
‘ciphertext’. Using the modified Song algorithm,
SEARCH returns true if the keyword to which token
corresponds exists in the unencrypted text, or false oth-
erwise.

SUM(ciphertext, publickey)

SUM is an aggregate user-defined function. It receives as
inputs an encrypted value, ‘ciphertext’, and a public key
that corresponds to the HOM scheme described above.
SUM maintains an internal encrypted aggregate value
and adds homomorphically the ciphertext to this aggre-
gate using the public key. The SUM UDF may be called
on a few rows in a database and it returns the overall
encrypted aggregate result over these rows.

INCREMENT (ciphertext, encrypted_constant, publickey)

INCREMENT receives as inputs a ciphertext from the
database, an encrypted constant, and a public key corre-
sponding to the HOM scheme described above. INCRE-
MENT homomorphically adds encrypted_constant to
ciphertext, effectively incrementing the value ciphertext
corresponds to by the constant in encrypted_constant. It
returns the newly incremented value.

The threat model can be extended to the case when the
application infrastructure and proxy are also untrusted (threat
2). This model is especially relevant for a multi-user web site
running a web and application server. To understand both the
problems faced by a multiuser web application and solutions
provided by exemplary embodiments of the invention, con-
sider phpBB, a popular online web forum. In phpBB, each
user has an account and a password, belongs to certain
groups, and can send private messages to other users.
Depending ontheir groups’ permissions, users can read entire
forums, only forum names, or not be able to read a forum at
all. There are several confidentiality guarantees that would be
useful in phpBB. For example, we would like to ensure that a
private message sent from one user to another is not visible to
anyone else; that posts in a forum are accessible only to users
in a group with access to that forum; and that the name of a
forum is shown only to users belonging to a group that’s
allowed to view it. The inventive system provides these guar-
antees in the face of arbitrary compromises, thereby limiting
the damage caused by a compromise.

Achieving these guarantees requires addressing first and
second challenges. First, the system captures the applica-
tion’s access control policy for shared data at the level of SQL
queries. To do this, the system requires developers to annotate
their database schema to specify principals and the data that
each principal has access to, as described below.

10

15

20

25

30

35

40

45

50

55

60

65

18

A second challenge is to reduce the amount of information
that an adversary can gain by compromising the system. The
inventive system limits the leakage resulting from a compro-
mised application or proxy server to just the data accessible to
users who were logged in during the compromise. In particu-
lar, the attacker cannot access the data of users that were not
logged in during the compromise. Leaking the data of active
users in case of a compromise is unavoidable: given the
impracticality of arbitrary computation on encrypted data,
some data for active users must be decrypted by the applica-
tion.

In exemplary embodiments of the invention, each user has
a key (e.g., her application-level password) that provide
access to the user’s data. The system encrypts different data
items with different keys, and enforces the access control
policy using chains ofkeys starting from user passwords and
ending in the encryption keys of SQL data items, as described
below. When a user logs in, the user provides a password to
the proxy (via the application). The proxy uses this password
to derive onion keys to process queries on encrypted data, as
described above, and to decrypt the results. The proxy can
decrypt only the data that the user has access to, based on the
access control policy. The proxy gives the decrypted data to
the application, which can now compute on it. When the user
logs out, the proxy deletes the user’s key.

To express the data privacy policy of a database-backed
application at the level of SQL queries, the application devel-
oper can annotate the schema of a database by specifying, for
any subset of data items, which principal has access to it. A
principal is an entity, such as a user or a group, over which it
is natural to specify an access policy. Each SQL query involv-
ing an annotated data item requires the privilege of the cor-
responding principal.

Exemplary embodiments of the invention define its own
notion of principals instead of using existing DBMS princi-
pals for two reasons: first, many applications do not map
application-level users to DBMS principals in a sufficiently
fine-grained manner, and second, the system requires explicit
delegation of privileges between principals that is difficult to
extract in an automated way from an access control list speci-
fication.

An application developer annotates the schema using the
three steps described below and illustrated in FIG. 4. In the
examples, italics indicate table and column names, and bold
text indicates annotations added for the inventive system.

Step 1. The developer defines the principal types (using
PRINCTYPE) used in her application, such as users, groups,
or messages. A principal is an instance of a principal type,
e.g., principal 5 of type user. There are two classes of princi-
pals: external and internal. External principals correspond to
end users who explicitly authenticate themselves to the appli-
cation using a password. When a user logs into the applica-
tion, the application must provide the user password to the
proxy so that the user can get the privileges of her external
principal. Privileges of other (internal) principals can be
acquired only through delegation, as described in Step 3.
When the user logs out, the application must inform the
proxy, so that the proxy forgets the user’s password as well as
any keys derived from the user’s password.

Step 2. The developer specifies which columns in her SQL
schema contain sensitive data, along with the principals that
should have access to that data, using the ENC FOR annota-
tion. The system requires that for each private data item in a
row, the name of the principal that should have access to that
data be stored in another column in the same row. For
example, in FIG. 4, the decryption of msgtext x37a21f is
available only to principal 5 of type msg.

US 9,087,212 B2

19

FIG. 4 shows part of phpBB’s schema with annotations to
secure private messages. Only the sender and receiver may
see the private message. An attacker that gains complete
access to phpBB and the DBMS can access private messages
of only currently active users.

Step 3. Programmers can specify rules for how to delegate
the privileges of one principal to other principals, using the
known speaksfor relation, for example. In phpBB, for
example, a user should also have the privileges of the groups
the user belongs to. Since many applications store such infor-
mation in tables, programmers can specify how to infer del-
egation rules from rows in an existing table. In particular,
programmers can annotate a table T with (a x) SPEAKS_FOR
(by). This annotation indicates that each row present in that
table specifies that principal a of type x speaks for principal b
of type y, meaning that a has access to all keys that b has
access to. Here, x and y must always be fixed principal types.
Principal b is always specified by the name of a column in
table T. On the other hand, a can be either the name of another
column in the same table, a constant, or T2.col, meaning all
principals from column col of table T2. For example, in FIG.
4, principal “Bob” of type physical user speaks for principal
2 of type user, and in FIG. 6, all principals in the contactld
column from table PCMember (of type contact) speak for the
paperld principal of type review. Optionally, the programmer
can specify a predicate, whose inputs are values in the same
row, to specify a condition under which delegation should
occur, such as excluding conflicts in FIG. 6. Additional
examples of using annotations to secure applications are
described below.

Each principal (i.e., each instance of each principal type) is
associated with a secret, randomly chosen key. If principal B
speaks for principal A (as a result of some SPEAKS_FOR
annotation), then principal A’s key is encrypted using princi-
pal B’skey, and stored as a row in the special access keys table
in the database. This allows principal B to gain access to
principal A’s key. For example, in FIG. 4, to give users 1 and
2 access to message 5, the key of msg 5 is encrypted with the
key of user 1, and also separately encrypted with the key of
user 2.

Each sensitive field is encrypted with the key of the prin-
cipal in the ENC FOR annotation. The system encrypts the
sensitive field with onions in the same way as for single-
principal (described above), except that onion keys are
derived from a principal’s key as opposed to a global master
key.

The key of each principal is a combination of a symmetric
key and a public-private key pair. In the common case, the
system uses the symmetric key of a principal to encrypt any
data and other principals’ keys accessible to this principal,
with little CPU cost. However, this is not always possible, if
some principal is not currently online. For example, in FIG. 4,
suppose Bob sends message 5 to Alice, but Alice (user 1) is
notonline. This means that the system does not have access to
user 1’s key, so it will not be able to encrypt message 5’s key
with user 1’s symmetric key. In this case, the system looks up
the public key of the principal (i.e., user 1) in a second table,
public keys, and encrypts message 5’s key using user 1’s
public key. When user 1 logs in, user 1 will be able to use the
secret key part of her key to decrypt the key for message 5
(and re-encrypt it under the symmetric key for future use).

For external principals (i.e., physical users), the system
assigns arandom key just as for any other principal. To give an
external user access to the corresponding key on login, the
system stores the key of each external principal in a third
table, external keys, encrypted with the principal’s password.
This allows the system to obtain a user’s key given the user’s

10

15

20

25

30

35

40

45

50

55

60

65

20

password, and also allows a user to change passwords without
changing the key of the principal.

When a table witha SPEAKS_FOR relation is updated, the
system updates the access keys table accordingly. To insert a
new row into access keys for a new SPEAKS_FOR relation,
the proxy must have access to the key of the principal whose
privileges are being delegated. This means that an adversary
that breaks into an application or proxy server cannot create
new SPEAKS_FOR relations for principals that are not
logged in, because neither the proxy nor the adversary have
access to their keys. If a SPEAKS_FOR relation is removed,
the system revokes access by removing the corresponding
row from access keys.

When encrypting data in a query or decrypting data from a
result, the system follows key chains starting from passwords
of users logged in until it obtains the desired keys. As an
optimization, when a user logs in, the system proxy loads the
keys of some principals to which the user has access (in
particular, those principal types that do not have too many
principal instances—e.g., for groups the user is in, but not for
messages the user received). Applications inform the system
of'users logging in or out by issuing INSERT and DELETE
SQL queries to a special table cryptdb_active that has two
columns, username and password. The proxy intercepts all
queries for cryptdb_active, stores the passwords of logged-in
users in memory, and never reveals them to the DBMS server.

The system guards the data of inactive users at the time of
an attack. If a compromise occurs, the system provides a
bound on the data leaked, allowing the administrators to not
issue a blanket warning to all the users of the system. In this
respect, the inventive system is different from known
approaches to database security. However, some special users
such as administrators with access to a large pool of data
enable a larger compromise upon an attack. To avoid attacks
happening when the administrator is logged in, the adminis-
trator should create a separate user account with restricted
permissions when accessing the application as a regular user.
Also, as good practice, an application should automatically
log out users who have been inactive for some period of time.

Exemplary systems are now described for securing three
existing multi-user web applications. For brevity, we show
simplified schemas, omitting irrelevant fields and type speci-
fiers. Overall, we find that once a programmer specifies the
principals in the application’s schema, and the delegation
rules for them using SPEAKS_FOR, protecting additional
sensitive fields just requires additional ENC FOR annota-
tions.

FIG. 5 shows an annotated schema for securing access to
posts in phpBB. A user has access to see the content of posts
in a forum if any of the groups that the user is part of has such
permissions, indicated by optionid 20 in the aclgroups table
for the corresponding forumid and groupid. Similarly,
optionid 14 enables users to see the forum’s name.

As is well known, phpBB is a widely used open source
forum with a rich set of access control settings. Users are
organized in groups; both users and groups have a variety of
access permissions that the application administrator can
choose. Securing private messages between two users in
phpBB was described above in conjunction with FIG. 4. A
more detailed case is securing access to posts, as shown in
FIG. 5. This example shows how to use predicates (e.g., IF
optionid=. ..)to implement a conditional speaks-for relation
on principals, and also how one column (forumid) can be used
to represent multiple principals (of different type) with dif-
ferent privileges. It is understood that there are more ways to
gain access to a post, but they are omitted for the sake of
brevity.

US 9,087,212 B2

21

HotCRP is a popular conference review application. A key
policy for HotCRP is that PC members cannot see who
reviewed their own (or conflicted) papers. FIG. 6 shows anno-
tations for HotCRP’s schema to enforce this policy. Reviews
and the identity of reviewers providing the review will be
available only to PC members (table PCMember includes PC
chairs) who are not conflicted, and PC chairs cannot override
this restriction.

The known HotCRP application cannot prevent a curious
or careless PC chair from logging into the database server and
seeing who wrote each review for a paper for which there is a
conflict. As a result, conferences often set up a second server
to review the chair’s papers or use inconvenient out of band
emails. With the inventive system, a PC chair cannot learn
who wrote each review for a paper, even after breaking into
the application or database, since the PC Chair does not have
the decryption key. The reason is that the SQL predicate
“NoConflict” checks if a PC member is conflicted with a
paper and prevents the proxy from providing access to the PC
chair in the key chain. It is assumed that the PC chair does not
modify the application to log the passwords of other PC
members to subvert the system.

The grad-apply application is a graduate admissions sys-
tem used by MIT EECS, for example. The schema was anno-
tated to allow an applicant’s folder to be accessed only by the
respective applicant and any faculty using (reviewers.review-
er_id reviewer), meaning all reviewers, SPEAKS_FOR (can-
didate_id candidate) in table candidates, and . . . SPEAKS_
FOR (letter_id letter) in table letters. The applicant can see all
of their folder data except for letters of recommendation.
Overall, grad-apply has simple access control and therefore
simple annotations.

Exemplary embodiments of the invention support most
relational queries and aggregates on standard data types, such
as integers and text/varchar types. Additional operations can
be added by extending its existing onions, or adding new
onions for specific data types (e.g., spatial and multi-dimen-
sional range queries). Alternatively, in some cases, it may be
possible to map complex unsupported operation to simpler
ones (e.g., extracting the month out of an encrypted date is
easier if the date’s day, month, and year fields are encrypted
separately). There are certain computations that may not be
able to be supported on encrypted data. For example, it may
not be possible to support both computation and comparison
on the same column, such as WHERE salary>age*2+10. The
system can process a part of this query, but it would also
require some processing on the proxy. In the system, such a
query should be (1) rewritten into a sub-query that selects a
whole column, SELECT age*2+10 FROM . . . , computed
using HOM, and (2) re-encrypted in the proxy, creating a new
column (call it aux) on the DBMS server comprising the
newly encrypted values. Finally, the original query with the
predicate WHERE salary>aux should be run.

When chaining encryption keys to user passwords, the
system cannot perform server-side computations on values
encrypted for different principals, even if the application has
the authority of all principals in question, because the cipher-
texts are encrypted with different keys. For some computa-
tions, it may be practical for the proxy to perform the com-
putation after decrypting the data, but for others (e.g., large-
scale aggregates) this approach may be too expensive. A
possible extension to support such queries may be to maintain
multiple ciphertexts for such values, encrypted under differ-
ent keys.

It is understood that a variety of exemplary implementa-
tions are possible for systems to provide confidentiality in
accordance with exemplary embodiments of the invention. In

10

15

20

25

30

35

40

45

50

55

60

65

22

one particular embodiment, the proxy comprises C++ library
and a Lua module. The C++ library includes a query parser; a
query encryptor/rewriter, which encrypts fields or includes
UDFs in the query; and a result decryption module. To allow
applications to transparently use the system, we used MySQL
proxy and implemented a [.ua module that passes queries and
results to and from the C++ module. The inventive crypto-
graphic protocols were implemented using NTL.

As noted above, the inventive system does not change the
DBMS; we implement all server-side functionality with
UDFs and server-side tables. As a consequence, the inventive
system works on top of any SQL DBMS that supports UDFs
and standard SQL. This feature of the system enables easier
adoption of CryptDB in a variety of existing DBMSes and
helps preserve the optimized performance of DBMSes.

Some information is now provided on four aspects of the
inventive system: the difficulty of modifying an application to
run on top of the system, the types of queries and applications
the system is able to support, the level of security the system
provides, and the performance impact of using the system.
For this analysis, we use seven applications as well as a large
trace of SQL queries.

We evaluate the effectiveness of our annotations and the
needed application changes on the three applications
described above (phpBB, HotCRP, and grad-apply), as well
asona TPC-C query mix (a standard workload in the database
industry). We then analyze the functionality and security of
CryptDB on three more applications, on TPC-C, and on a
large trace of SQL queries. The additional three applications
are OpenEMR, an electronic medical records application
storing private medical data of patients; the web application
of an MIT class (6.02), storing students’ grades; and PHP-
calendar, storing people’s schedules. The large trace of SQL
queries comes from a popular MySQL server at MIT, sql.mit.
edu. This server is used primarily by web applications run-
ning on scripts.mit.edu, a shared web application hosting
service operated by MIT’s Student Information Processing
Board (SIPB). In addition, this SQL server is used by a
number of applications that run on other machines and use
sql.mit.edu only to store their data. Our query trace spans
about ten days, and includes approximately 126 million que-
ries.

In FIG. 7, a number of databases, tables, and columns on
the sql.mit.edu MySQL server, used for trace analysis, indi-
cating the total size of the schema, and the part of the schema
seen in queries during the trace period. FIG. 7 summarizes the
schema statistics for sql.mit.edu; each database is likely to be
a separate instance of some application.

Finally, we evaluate the overall performance of the system
on the phpBB application and on a query mix from TPC-C,
and perform a detailed analysis through microbenchmarks. In
the six applications (not counting TPC-C), we only encrypt
sensitive columns, according to a manual inspection. Some
fields were clearly sensitive (e.g., grades, private message,
medical information), but others were only marginally so
(e.g., the time when a message was posted). There was no
clear threshold between sensitive or not, but it was clear to us
which fields were definitely sensitive. In the case of TPC-C,
we encrypt all the columns in the database in single-principal
mode so that we can study the performance and functionality
of a fully encrypted DBMS. All fields are considered for
encryption in the large query trace as well.

FIG. 8 summarizes the amount of programmer effort
required to use the system in three multi-user web applica-
tions and in the single-principal TPC-C queries. The results
show that, for multi-principal mode, the system required
between 11 and 13 unique schema annotations (29 to 111 in

US 9,087,212 B2

23

total), and 2 to 7 lines of code changes to provide user pass-
words to the proxy, in order to secure sensitive information
stored in the database. Part of the simplicity is because secur-
ing an additional column requires just one annotation in most
cases. The single-principal TPC-C queries required no appli-
cation annotations at all.

To evaluate what columns, operations, and queries the
system can support, we analyzed the queries issued by six
web applications, the TPC-C queries, and the SQL queries
from sql.mit.edu. The results are shown in the left halfof FIG.
9. The inventive system supports most queries; the number of
columns in the “needs plaintext” column, which counts col-
umns that cannot be processed in encrypted form, is small
relative to the total number of columns. For PHP-calendar and
OpenEMR, the system does not support queries on certain
sensitive fields that perform string manipulation (e.g., sub-
string and lowercase conversions) or date manipulation (e.g.,
obtaining the day, month, or year of an encrypted date).
However, if these functions were precomputed with the result
added as standalone columns (e.g., each of the three parts of
a date were encrypted separately), the system would support
these queries. The next two columns, “needs HOM” and
“needs SEARCH?”, reflect the number of columns for which
that encryption scheme is needed to process some queries.
The numbers suggest that these encryption schemes are
important; without these schemes, the system would be
unable to support those queries.

Based on an analysis of the larger sql.mit.edu trace, we
found that the system should be able to support operations
over all but 1,094 of the 128,840 columns observed in the
trace. The “in-proxy processing” shows analysis results
where we assumed the proxy can perform some lightweight
operations on the results returned from the DBMS server.
Specifically, this included any operations that are not needed
to compute the set of resulting rows or to aggregate rows (that
is, expressions that do not appear in a WHERE, HAVING, or
GROUP BY clause, or in an ORDER BY clause with a
LIMIT, and are not aggregate operators). With in-proxy pro-
cessing, the system should be able to process queries over
encrypted data over all but 571 of the 128,840 columns, thus
supporting 99.5% of the columns. Of those 571 columns, 222
use a bitwise operator in a WHERE clause or perform bitwise
aggregation, such as the Gallery2 application, which uses a
bitmask of permission fields and consults them in WHERE
clauses. Rewriting the application to store the permissions in
a different way would allow the system to support such opera-
tions. Another 205 columns perform string processing in the
WHERE clause, such as comparing whether lowercase ver-
sions of two strings match. Storing a keyed hash of the low-
ercase version of each string for such columns, similar to the
JOIN-ADJ scheme, could support case-insensitive equality
checks for ciphertexts. 76 columns are involved in math-
ematical transformations in the WHERE clause, such as
manipulating dates, times, scores, and geometric coordinates.
41 columns invoke the LIKE operator with a column refer-
ence for the pattern; this is typically used to check a particular
value against a table storing a list of banned IP addresses,
usernames, URLs, etc. Such a query can also be rewritten if
the data items are sensitive.

To understand the amount of information that would be
revealed to the adversary in practice, we examine the steady-
state onion levels of different columns for a range of applica-
tions and queries.

FIG. 8 shows the number of annotations the programmer
needs to add to secure sensitive fields, lines of code to be
added to provide the passwords of users, and the number of
sensitive fields that the system secures with these annotations,

20

25

30

40

45

24

for three different applications. We count as one annotation
each invocation of our three types of annotations and any SQL
predicate used ina SPEAKS_FOR annotation. Since multiple
fields in the same table are usually encrypted for the same
principal (e.g., message subject and content), we also report
unique annotations.

FIG. 9 shows the steady-state onion levels for database
columns required by a range of applications and traces.
“Needs plaintext” indicates that the system cannot execute
the application’s queries over encrypted data for that column.
For the applications in the top group of rows, sensitive col-
umns were determined manually, and only these columns
were considered for encryption. For the bottom group of
rows, all database columns were automatically considered for
encryption. The rightmost column considers the application’s
most sensitive database columns, and reports the number of
them that have MinEnc in HIGH.

To quantify the level of security, we define the MinEnc of
acolumn to be the weakest onion encryption scheme exposed
on any of the onions of a column when onions reach a steady
state (i.e., after the application generates all query types, or
after running the whole trace). We consider RND and HOM to
be the strongest schemes, followed by SEARCH, followed by
DET and JOIN, and finishing with the weakest scheme which
is OPE. For example, if a column has onion Eq at RND, onion
Ord at OPE and onion Add at HOM, the MinEnc of this
column is OPE. The right side of FIG. 9 shows the MinEnc
onion level for a range of applications and query traces. We
see that most fields remain at RND, which is the most secure
scheme. For example, OpenEMR has hundreds of sensitive
fields describing the medical conditions and history of
patients, but these fields are mostly just inserted and fetched,
and are not used in any computation. A number of fields also
remain at DET, typically to perform key lookups and joins.
OPE, which leaks order, is used the least frequently, and
mostly for fields that are marginally sensitive (e.g., times-
tamps and counts of messages). Thus, adjustable security of
the system provides a significant improvement in confidenti-
ality over revealing all encryption schemes to the server.

To analyze the security for specific columns that are par-
ticularly sensitive, we define a new security level, HIGH,
which includes the RND and HOM encryption schemes, as
well as DET for columns having no repetitions (in which case
DET is logically equivalent to RND). These are highly secure
encryption schemes leaking virtually nothing about the data.
DET for columns with repeats and OPE are not part of HIGH
as they reveal relations to the DBMS server. The rightmost
column in FIG. 9 shows that most of the particularly sensitive
columns (again, according to manual inspection) are at
HIGH.

For the sql.mit.edu trace queries, approximately 6.6% of
columns were at OPE even with in-proxy processing; other
encrypted columns (93%) remain at DET or above. Out of the
columns that were at OPE, 3.9% are used in an ORDER BY
clause with a LIMIT, 3.7% are used in an inequality compari-
son in a WHERE clause, and 0.25% are used in a MIN or
MAX aggregate operator (some of the columns are counted in
more than one of these groups). It would be difficult to per-
form these computations in the proxy without substantially
increasing the amount of data sent to it.

Although we could not examine the schemas of applica-
tions using sql.mit.edu to determine what fields are sensi-
tive—mostly due to its large scale—we measured the same
statistics as above for columns whose names are indicative of
sensitive data. In particular, the last three rows of FIG. 9 show
columns whose name contains the word “pass” (which are
almost all some type of password), “content” (which are

US 9,087,212 B2

25

typically bulk data managed by an application), and “priv”
(which are typically some type of private message). The sys-
tem reveals much less information about these columns than
an average column, almost all of them are supported, and
almost all are at RND or DET. Finally, we empirically vali-
dated confidentiality guarantees by trying real attacks on
phpBB that have been listed in the CVE database, including
two SQL injection attacks (CVE-2009-3052 & CVE-2008-
6314), bugs in permission checks (CVE-2010-1627 & CVE-
2008-7143), and a bug in remote PHP file inclusion (CVE-
2008-6377). We found that, for users not currently logged in,
the answers returned from the DBMS were encrypted; even
with root access to the application server, proxy, and DBMS,
the answers were not decryptable.

Referring to FIG. 10, a computer includes a processor
1002, a volatile memory 1004, an output device 1005, a
non-volatile memory 1006 (e.g., hard disk), and a graphical
user interface (GUI) 1008 (e.g., a mouse, a keyboard, a dis-
play, for example). The non-volatile memory 1006 stores
computer instructions 1012, an operating system 1016 and
data 1018, for example. In one example, the computer
instructions 1012 are executed by the processor 1002 out of
volatile memory 1004 to perform all or part of the processing
described above. An article 1019 can comprise a machine-
readable medium that stores executable instructions causing a
machine to perform any portion of the processing described
herein.

Processing is not limited to use with the hardware and
software described herein and may find applicability in any
computing or processing environment and with any type of
machine or set of machines that is capable of running a
computer program. Processing may be implemented in hard-
ware, software, or a combination of the two. Processing may
be implemented in computer programs executed on program-
mable computers/machines that each includes a processor, a
storage medium or other article of manufacture that is read-
able by the processor (including volatile and non-volatile
memory and/or storage elements), at least one input device,
and one or more output devices. Programs may be imple-
mented in a high level procedural or object-oriented program-
ming language to communicate with a computer system.
However, the programs may be implemented in assembly or
machine language. The language may be a compiled or an
interpreted language and it may be deployed in any form,
including as a stand-alone program or as a module, compo-
nent, subroutine, or other unit suitable for use in a computing
environment. A computer program may be deployed to be
executed on one computer or on multiple computers at one
site or distributed across multiple sites and interconnected by
a communication network. A computer program may be
stored on a storage medium or device (e.g., CD-ROM, hard
disk, or magnetic diskette) that is readable by a general or
special purpose programmable computer for configuring and
operating the computer when the storage medium or device is
read by the computer to perform processing.

Having described exemplary embodiments of the inven-
tion, it will now become apparent to one of ordinary skill in
the art that other embodiments incorporating their concepts
may also be used. The embodiments contained herein should
not be limited to disclosed embodiments but rather should be
limited only by the spirit and scope of the appended claims.
All publications and references cited herein are expressly
incorporated herein by reference in their entirety.

What is claimed is:

1. A method for processing database queries, comprising:

encrypting a database in a database system using two or
more encryption schemes, with each data item in the
database encrypted using at least one of the two or more
encryption schemes;

40

45

26

selecting for each data item specified in an input query
from an application, one of the encryption schemes;

transforming the input query to an encrypted query using
the selected encryption scheme for each data item speci-
fied in the query;

determining the input query requests a join between a

stored first column initially encrypted with a first key
and a stored second column encrypted with a second key
different from the first key;

providing a token to the database system for adjusting an

encryption of the first stored column to an encryption
with the second key to match an encryption of the stored
second column, wherein subsequent join queries
between the stored first column and the stored second
column can be executed without re-adjusting encryption
of the first or second stored columns;

executing the encrypted query at the database system,

without decrypting any of the encrypted data items to
plaintext at the database system, to produce one or more
encrypted results;

decrypting the encrypted results using the selected decryp-

tion scheme for each data item in the encrypted results to
generate decrypted results; and

returning the decrypted results to the application.

2. The method of claim 1 wherein the transformation
occurs in a database proxy placed between the application
and the database system.

3. The method according to claim 1 wherein the transfor-
mation of the input query occurs in an ORM library or layer
used by the application.

4. The method according to claim 1 wherein the transfor-
mation of the input query occurs in a database server.

5. The method according to claim 1 wherein the transfor-
mation of the input query occurs in the application.

6. The method according to claim 1 wherein the execution
of'the encrypted query in the database system is done using a
user-defined function and SQL operators.

7. The method according to claim 1 wherein the execution
of the encrypted query in the database system is done by
modifying a user-defined function of the database system.

8. The method according to claim 1 wherein decrypting the
encrypted results includes performing further query process-
ing as required by the input query.

9. The method according to claim 1, wherein one or more
of the data items in the database are encrypted using two or
more encryption schemes.

10. The method according to claim 1, wherein one or more
of the data items in the database are encrypted using two or
more encryption schemes as layers.

11. The method according to claim 10, wherein transform-
ing the input query includes decrypting one or more of the
layers to adjust a current layer of encryption according to the
input query.

12. The method according to claim 10, wherein executing
the encrypted query includes selecting the layers of encryp-
tion according to the input query.

13. The method according to claim 10, wherein executing
the encrypted query includes decrypting one or more layers to
adjust a current layer of encryption according to the query.

14. The method according to claim 10, wherein the layers
of'encryption include increasing a level of functionality of the
encryption moving toward inner layers of the encryption lay-
ers.

15. The method according to claim 10, wherein the layers
of encryption include increasing a level of security of the
encryption moving toward outer layers of the encryption lay-
ers.

US 9,087,212 B2

27

16. The method according to claim 1 wherein selecting the
encryption scheme is done at run-time when the input query
arrives.
17. The method according to claim 1 wherein selecting the
encryption scheme is done based on application code before
run-time.
18. The method according to claim 1, wherein the database
management system does not learn the first or second keys or
content of the data in the first column.
19. The method according to claim 1, further including
providing an annotation language to specify application
access control for one or more data items.
20. The method according to claim 1, wherein encrypting a
data item is done using one out of two or more keys based on
access control policy of the application.
21. The method according to claim 20, wherein the encryp-
tion key is derived from a user’s password.
22. The method of claim 1 wherein the two or more encryp-
tion schemes include homomorphic encryption (HOM) and
order-preserving encryption (OPE).
23. An article, comprising:
a non-transitory computer readable medium having stored
instructions that enable a machine to perform processing
of database queries by:
encrypting a database in a database system using two or
more encryption schemes, with each data item in the
database encrypted using at least one of the two or
more encryption schemes;

selecting for each data item specified in an input query
from an application, one of the encryption schemes;

transforming the input query to an encrypted query
using the selected encryption scheme for each data
item specified in the query;

determining the input query requests a join between a
stored first column initially encrypted with a first key
and a stored second column encrypted with a second
key different from the first key;

providing a token to the database system for adjusting an
encryption of the first stored column to an encryption
with the second key to match an encryption of the

10

15

20

25

30

35

28

stored second column, wherein subsequent join que-
ries between the stored first column and the stored
second column can be executed without re-adjusting
encryption of the first or second stored columns;

executing the encrypted query at the database system,
without decrypting any of the encrypted data items to
plaintext at the database system, to produce one or
more encrypted results;

decrypting the encrypted results using the selected
decryption scheme for each data item in the encrypted
results to generate decrypted results; and

returning the decrypted results to the application.

24. The article according to claim 23, wherein one or more
of the data items in the database are encrypted using two or
more encryption schemes as layers.

25. The article of manufacture of claim 23 wherein the
transformation occurs in a database proxy placed between the
application and the database system.

26. The article of manufacture of claim 23 wherein the
transformation of the input query occurs inan ORM library or
layer used by the application.

27. The article of manufacture of claim 23 wherein the
transformation of the input query occurs in a database server.

28. The article of manufacture of claim 23 wherein the
transformation of the input query occurs in the application.

29. The article of manufacture of claim 23 wherein the
execution of the encrypted query in the database system is
done using a user-defined function and SQL operators.

30. The article of manufacture of claim 23 wherein the
execution of the encrypted query in the database system is
done by modifying a user-defined function of the database
system.

31. The article of manufacture of claim 23 wherein
decrypting the encrypted results includes performing further
query processing as required by the input query.

32. The article of manufacture of claim 23 wherein the two
or more encryption schemes include homomorphic encryp-
tion (HOM) and order-preserving encryption (OPE).

#* #* #* #* #*

